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Abstract. The 3z + 1 problem is a long-standing problem in number theory
concerning iteration of the map T : Z — Z given by T'(n) = 3”2—"'1 if n is
odd, and T'(n) = % if n is even. This paper studies iteration of the function
flz) =3 (cos %)2—1— % (sin %)2 which interpolates the function T on R, and
applies methods of discrete dynamical systems to f. We show that the function
f has negative Schwarzian derivative on the positive reals R*, and that all
periodic orbits of f on the positive integers are attracting. The dynamics of f
on most points of RY is closely related to that of T', but there is a nonempty
closed subset U of RT whose iterates are unbounded. We conjecture that the

set U has measure zero.

AMS (MOS) subject classification : 11B37, 26A18, 58F08.

1 Introduction

The 3z + 1 Conjecture is an easily-stated conjecture which has circulated in

mathematical circles for fifty years. Let T : ZT — Z™ be defined as

z/2, x even

Tle) = (3z+1)/2, x odd.



The conjecture is that for each positive integer n there exists a k such that
T*(n) = 1, where T*(n) is the k'" iterate of n under the map 7. This has
been verified numerically for all n < 5.6 x 103 [11]. One easily sees that {1,2}
forms a two-cycle, which is sometimes referred to as the trivial cycle. It has
been shown that if another cycle exists, its period must be at least 17,087,915
[7]. Lagarias[8] gives an excellent overview of the problem until 1985, making
connections with topics such as continued fractions, ergodic theory and theo-
retical computer science. There has been a great deal of work on the problem
since 1985; see Lagarias[9].

In this paper, we study the iterates of an extension of the map T to an entire

function f, defined by

3 1
flz) = gcos2 (g:c) + :c2+ sin? (gm)
B 1 2z+41
= s+ - —cos (rz).
The non-negative real axis RT = [0,00) is an invariant set for f and we

study its iterates there. Clearly f(z) = T(z) for z € Z*. The non-negative
real axis Rt = [0, oo) is an invariant set for f, and we shall primarily consider
iterates of f on R*. A key factor in our analysis is that the function f has
negative Schwarzian derivative on R*. The function f(z) is displayed in Figure
1.

By studying the map f, we shall determine not only some aspects of the
asymptotic behaviour on R, but also on Z*. Other work has been done in
extending the map T to the rationals with odd denominators and to the 2-
adic integers (see for example [1], [13], [14], [15]), but these extensions are not
compatible with the function f.

One reason which seems to make the 3z 4+ 1 problem so hard is the apparent
randomness in the iterates for “large” initial values; whether an iterate bounces

up or down seems difficult to determine. If this randomness was true, it would



Figure 1: The function f(z).




support the conjecture, for then on average, one goes down by a factor of

0" ()" )"

This randomness is true in the sense that for any block of 2¥ consecutive integers

n, the 2% vectors
v(n) := (n(mod2), T(n)(mod?2),...,T*~Y(n)(mod 2))

enumerate every pattern of zeroes and ones exactly once.
The conjecture is discussed in the papers of Crandall[4], Lagarias and Weiss[10]
and Wagon[17].

2 Negative Schwarzian Derivative

The Schwarzian derivative of a function is defined as

5835

Let Orb(z) denote the positive orbit of z, namely Orb(z) = {f"(z)|n € Z*}.

Sf(=)

The immediate basin of attraction of an attracting periodic point p is the union
of the connected components of its basin of attraction which contain Orb(p).
Singer[16] showed that the condition of everywhere negative Schwarzian deriva-

tive Sf < 0 puts very strong constraints on the iterates of the function f.

Theorem 2.1 (Singer[16]) Let J be an interval in R. If g : J — J is a C°
function with Sg(z) < 0 for all z € J, then

1. The immediate basin of attraction of any attracting periodic orbit contains

either a critical point of g or a boundary point of the interval J;
2. Each neutral periodic point is attracting;

3. There exists no interval of periodic points.



Later Blokh and Lyubich[3] determined the possible limiting behaviour of

iterates of almost all initial points = of a function ¢ on an interval with S¢ < 0.

Theorem 2.2 (Blokh and Lyubich[3]) Let J be a compact interval. Suppose
g : J = J is piecewise monotone, and on each interval of monotonicity, g
is C3, has negative Schwarzian derivative and no other critical points. Also
suppose that g is C' in the neighbourhood of each extrema. Then for almost
every (Lebesgue) x € J, w(z) is an indecomposable attractor A of one of the

following forms:
1. A is a periodic orbit;
2. A is a periodic interval;

3. A=uw(c), where c is a critical point.

It should be noted that when case 1 occurs, the immediate basin of attraction
of the periodic orbit A contains a critical point of g. Similarly, one may prove
that at least one subinterval of the periodic interval of case 2 also contains
a critical point of g. This implies almost all of the behaviour on J may be
determined by considering the w-limit sets of the critical points of g in J.

Now we prove the main result of this section.
Lemma 2.1 The function f has negative Schwarzian derivative Sf on R*.

Proof: To prove that Sf < 0 for z > 0 is equivalent to showing

a(x) = 2 (f'(2))*Sf <0

w2
for z > 0 when f'(z) # 0. It is simple to see that f'(z) # 0 when f"(z) = 0,

hence we need only consider the case when f'(z) # 0. We may expand g(z) to

obtain

g(m) — % [2f/f/// i 3(f”)2]



2 [1 _ %cos(mb) +m (2‘"”: 1) sin(mv)]
x [g cos(mz) — (MZ 1) sin(ﬂ:n)]
3 [sin(mc) . (235: 1) cos(m)] :

2z + 1\ 22 + 1
A(”D: ) +B<$: )+C,

where

A= —7x? (2 + cosz(mb)) ,
B = —2msin(wz) [1 4 cos(mz)],
C = %cosz(mc) + 3 cos(mz) — 3.

If g(z) = 0, then

2z 41 h() —B ++B? —4AC
= r) = .
4 24

Now we obtain some inequalities for the different terms in this expression. First,

we have

1
BZ—4AC:k(z):47r2 §z4—|—z3+8z—5

where z = cos(mz). Since k'(z) > 0 on z € [—1, 1], we have k(z) maximized at
z = 1. The term B has its minimum at z = —1/3 and A is maximized with

value —27%. Putting this all together gives

< 1.0887.

Thus (2z 4+ 1)/4 < 1.0887, implying =z < 1.6774.
One point we may exploit is that k(z) must be positive. Since k(z) is an

increasing function and £(0.55) < 0, we require cos(mz) > 0.55, hence

z € (2n — 0.3146,2n + 0.3146), for some n € Z.



Thus, if g(z) = 0, then z < 0.3146.
Now suppose g(z) = 0 and 0 < z < 0.3146. Then B < 0, giving

Thus (22 + 1)/4 < 0.29325 implying z < 0.0865. Repeating this process again
with 0 < z < 0.0865, we obtain z < 0, a contradiction. This gives the desired

result. O

A simple calculation shows that Sf(—0.1) > 0, so Lemma 2.1 is fairly sharp.

In view of Theorems 2.1 and 2.2 we determine the critical points of f on R*.

Lemma 2.2 1. The fized points of f on [0,00) are po = 0 < pg < p2 < ...
and satisfy n — 1 < p, < n and

1 1
#n_n_i—i—O(E) as n — oo. (1)

2. The critical points of f on [0,00) are ¢1 < ¢z < ¢3 < ... and satisfy
fn < €p < fing1 forn=1,2,... and

2 1 1
cn:n—%<(—1) _§>+O<ﬁ> as m — oo. (2)
Proof: The fixed points of f satisfy f(z) = z, which implies

1
cos(mz) = SRR

Using cos(m(z +n — %)) = sin(n(z +n)) = z + O(z?), we obtain the asymptotic

formula (1). Since

20+ 1

fllz) =1~ %cos(mb) + ( ) sin(7z),

this implies ¢, = n+O0(1/n) as n — oco. Expanding sin(m(z +n)) and cos(mr(z +
n)) to order O(z3), and letting ¢, = n + ¢/n + O(1/n?), we obtain (2). O

Some numerical values may be found in the table in section 3.
A reference for some of the basics of discrete dynamical systems is Devaney[6].
More advanced treatments are given in the recent works of Block and Coppel[2]

and de Melo and van Strien[5].



3 Iterates on Positive Reals

The function f has many invariant subsets on RY, for example Z*. We consider
iteration of f on certain subintervals of [0, 00), namely Iy = [0, p1], T2 = [p1, pia)
and I3 = [ps3,00). The first two of these intervals are invariant sets. On the

first interval the behaviour of f is extremely simple.

Theorem 3.1 The invariant set Iy = [0, p1] is invariant under f. It contains
a single attracting fized point © = pg = 0, and every point in I is attracted to

it except the repelling fired point at © = u.

Proof: The function f is increasing on I;, therefore I is invariant. Since
there are no fixed points on (0, 1) and f/(0) = 0.5, f(z) < z for z € (0, pq),

hence the fixed point attracts every point in (0, p1). O

Next we turn to iterates on the invariant set I = [u1, u3], which contains

the trivial cycle {1, 2} of the function T'. The main result on this interval is

Theorem 3.2 The interval I» = [u1,u3] is invariant under f. It contains

exactly two attracting periodic orbits, which are
Al = {1, 2}

Aj = {1.192531907...,2.138656335. . .}.

There is a partition

I = Q(A) UQ(A,) UT

in which Q(A;) is the basin of attraction for the set A;, i = 1,2, and T is a set

of measure zero.

Proof: The interval (u1,u3) contains exactly two critical points, ¢; and e3,
with f(e;) € (p1,p3), ¢ = 1,2, hence I is invariant. By Theorem 2.1, there
are at most two attracting periodic orbits in I (we actually have w(e1) = Aa

w(ez) = A1.) One may verify that A; and A, are both attracting two-cycles.



From the remark following Theorem 2.2, we have that the basins of attraction

for A; and A, cover I except for a set of measure zero. O

The interval I3 = [p3,00) is not an invariant set for f, because some of the

points eventually escape to the set [p1, p3). The interval I3 has a partition
Is = E; U Ry,
consisting of the escape set
E; :={z € I3:supw(z) < ps}
which is the open set of iterates that eventually leave I3, and the residual set
R;:={z € I3:infw(z) > pus}

which is a closed invariant subset of I3. The 3z + 1 Conjecture asserts that
every integer m > 3 eventually iterates to 1, hence escapes from I3, so we may
reformulate it as:

3z + 1 Conjecture. The set ZT N R; =0.

We partition the residual set R; as
Ry =55 UUy,

in which Sy is an open set consisting of the complete basins of attraction of all
attracting periodic orbits of f in I3, and Uy is the remaining closed set. We call
S¢ the stable set and Uy the unstable set. We study Sy in the remainder of this
section; we study Uy in the next section.

The following result shows that the stable set S; includes all nontrivial cycles

of the 3z + 1 function on Z7.

Theorem 3.3 Any cycle of the 3z + 1 function on Z* is an attracting periodic
orbit of f.



Proof: Suppose there is a periodic orbit Q of f on R*. Following Eliahou[7],
we have

L= 0

TEN

= H [1 — %cos(mb) + ﬁ(l — cos(mz))

TEN

> 11 [1— %Cos(mb)].

TEN
The inequality is strict since there are no periodic orbits strictly on the even
integers. Note also that

H fl(z) = H [1 - %cos(rw) + 7r2x: ! sin(w:n)] . (3)

z€eN zEQ

If QC Z*, we have
0< H f'(z) = H [1 — %COS(W:E)] <1 (4)
z€eQN z€EQ

thus the periodic orbit is an attractor. a

In pursuing the existence of attractive periodic orbits, note that equation
(3) shows that if there is an attracting periodic orbit on R*, it must have at
least one element “close” to an integer. In view of the conjecture that the 3z +1
function T' has no nontrivial cycle on Z*1, we extend this conjecture to propose:
Stable Set Conjecture. S; = 0.

Since the Schwarzian derivative is negative, we know that the immediate
basin of attraction of Q contains a critical point!. By considering the w-limit
sets of the critical points, numerical evidence indicates that few critical points

approach A,.

1Singer’s Theorem 2.1 applies not only to maps on compact intervals, but also when the

immediate basin of attraction is bounded, which clearly holds for the function f.

10



n I Cn w(en)
1 | 0.277337662 | 1.180938709 A,
2 | 1.577373244 | 1.958312216 Ay
3 | 2.445707694 | 3.084794846 A,
4 | 3.539500961 | 3.977293183 Ay
5 | 4.467909060 | 5.054721917 A,
6 | 5.526439840 | 5.984349314 Ay
7 | 6.477169613 | 7.040311859 Ay
8 | 7.519857986 | 7.988051868 Ay
9 | 8.482272052 | 9.031889137 Ay
10 | 9.515896841 | 9.990334437 Ay

The only values of n with w(e,) = Az for n < 1000 are {1,3,5,502,656}. For
all other n < 1000 we have w(cy) = A4;.
Critical Point Conjecture. Every critical point ¢, has either w(cy,) = Ay or
w(ey) = As.

The Critical Point Conjecture implies the Stable Set Conjecture, which itself

implies that the 3z 4+ 1 problem has no nontrivial cycles.

4 The Unstable Set

The unstable set Uy has a complicated structure. We may partition it as
U =U; VU,

in which U}) and Uy consist of the bounded and unbounded orbits in Uy,
respectively. Note that Z+OU}) = {), because a bounded orbit in Z* is eventually
periodic, and all such orbits are stable by Theorem 3.3.

Note that

Ug® = {ac € R; : lim sup f(k)(:c) = oo},

k— oo

11



that is, U” is the set of “divergent trajectories.” The non-existence of divergent
trajectories for the 3z + 1 function on Z* becomes:
Divergent Trajectories Conjecture. Z* N Uy = 0.

If this conjecture is true, then Z* N U; = 0, and the dynamics of T on Zt
is unrelated to the dynamics of f om Uy.

Now we study the structure of the invariant set Uy, showing that U; is
uncountable. For this purpose we recall the theorem of Li and Yorke in “Period

Three implies Chaos”.

Theorem 4.1 (Li and Yorke[12]) Let J be an interval and let F : J — J be
continuous. Assume there is a three-cycle. Then there is a periodic orbit of
every period, and there is an uncountable set S C .J containing no periodic

orbits which satisfies the following conditions:

1. For every p,q € S withp # q,

lim sup |F"(p) — F"(g)| > 0 (5)
lim inf [F"(p) = F"(q)| =0 (6)

2. For every p € S and periodic point q € J,

lim sup [F"(p) — F"(q)| > 0 (7)

n—0o0

We use this result to prove
Theorem 4.2 The set U}) s uncountable.
Proof: The function f has an orbit of period 3 in [us3, p5], namely
Q:={2.61376758 - --,3.408443979---,4.212821646 .. .}.

Form the new function f : [us, pis] — [p3, 5] by

H3 if f(iE) < pa3,
flz) =9 f(=) if ps < f(2) < pss,
ps i f(z) > ps.

12



Since f has a periodic orbit of period 3, Theorem 4.1 produces an uncountable
set S C [u3, p5] containing no periodic points which satisfies

lim sup |f"(p) - f"(q)| >0

n— 00
for any p € S and periodic point ¢ € §. Applying this to ¢ = uz and ¢ = ps
shows that neither of these points is in the orbit of any p € S, thus f(S) = £(S).
Thus S C U}), gving the desired result. O

The set U}) contains pg. In fact the point p3 is a “homoclinic point” in the

following sense.

Theorem 4.3 Given any € > 0, let J = (us3, p3 +€). Then we have

(1,00) C | Orb(a).

zeJ
Proof: Since pq = 3.5395--- > 3, there must be some z; € J and k; € ZT
such that f*¥(z) = 3. This implies f*1*2(z;) = 8. Since f is continuous,
intervals map to intervals, thus there must exist 5 € J and k» € Z1 such that
f¥2(z2) = 7. If z > 3 is an odd integer, then

3z +1

flo) = =5

>ze+|z/2] >z +2,

so by continuing this process, we can find values z € J such that Orb(z) contains
values arbitrarily large, thus I3 is contained in Uy sOrb(z). Since 1 € Orb(3),

it is clear that the open interval (1, u3) is also in this set. a
A similar method can be applied to gain information on the set Uz”.

Theorem 4.4 The set U contains a monotonically increasing divergent tra-

jectory. In particular, Ug° is infinite.

Proof: The continuity of f guarantees there exists an interval J; C [3,4]

such that f(J1) C [4,5]. Similarly, there is an interval J» C J; such that

13



f2(J2) C [7,8]. This process may be continued to give a sequence of intervals

J1 D Jy D J3 D ---such that

inf f¥(z) > sup f*l(z)

T€J) z€Jr_1
and
lim inf f*(z) = oco.
k—ocoxey f ( )
Since
[o.0]
7
k=1
is non-empty, there exists a divergent trajectory. a

Although both U]? and Ug® are both infinite sets, the preimages of integers
Z* appear to be dense in I3, so the 3z + 1 Conjecture suggests:
Unstable Set Conjecture. The unstable set Uy has Lebesgue measure zero.

Theorem 4.2 shows that U}) contains an uncountable “scrambled set”. The
same proof may be used to show the existence of such sets on other intervals
between some periodic points of f. Indeed, a computer plot reveals that the
period three points of f become increasingly dense for greater values of z, in-
ducing very tight scrambled sets which come arbitrarily close to the integers.
Since the dynamics on scrambled sets is associated with randomness, the chaotic
dynamics on the scrambled sets strongly influences the dynamics on the large
positive integers. This gives a heuristic argument, in terms of chaos, for the

apparent randomness in the 3z 4+ 1 problem.

5 Compactification of the Map f

We study the iteration of f on the invariant interval I* = [y1, 00). This domain
is not compact, but we can smoothly conjugate f to a function h which has a
continuous extension to a compact domain as follows. Consider the homeomor-

phism o(z) = 1/z which maps the domain I* to (0,1/p1] and define h(z) by



_ 4z
442 — (24 ) cos(n/x)

h(z)

for z € (0,1/p1]. Now h(z) extends to a continuous function h : [0,1/u] —
[0,1/p1] by setting h(0) = 0 and h(z) = h(z) for z € (0,1/u1]. Since the
conjugating function 1/z has zero Schwarzian derivative, it follows that h(z) has
negative Schwarzian derivative on (0,1/p4]. The map h has an infinite number
of critical points. Theorem 2.2 unfortunately does not apply to h because it is
not C! at the extreme point £ = 0. This compactification of f allows another

approach to studying the iterates of f on R¥.

6 Conclusion

These results show that the map f has some “extra” dynamics on R* which are
not accounted for by its dynamics on Z%, even if the 3z 4 1 conjecture is true.
However, the Stable Set Conjecture and the Unstable Set Conjecture together
would say that almost every orbit in R is “explained” by the dynamics of f
on Z%.

One can also consider the 3z 4 1 problem on Z™, the negative integers; this
is essentially the same as studying the 3z — 1 problem on Z*. Three periodic
orbits are known for T on Z~, which start at n = —1,—5 and —17 and have
periods 1,3 and 11 respectively. For the function f any periodic orbit on Z~
is repelling; this can be proved similarly to Theorem 3.3, noting that inequality
(4) reverses.

Studying iterates of the map f for complex values would be very different.
One natural line of interest would be to determine properties of the Julia set
J().

Lastly, it should be noted that some of the results given are dependent

on the particular interpolation function f. Any continuous interpolation of the

15



function T can be proven to have a three-cycle, a homoclinic orbit and divergent

trajectories.

Theorem 6.1 Let g : RT — R* be a continuous function which interpolates
the function T. Then g has a three-cycle, a homoclinic orbit and a divergent

trajectory.
Proof: To prove that a three-cycle exists, define M as
M =max{z <3:g¢(z) = z}.

Note that g(M) = M. Since g(2) = 1 and ¢(3) = 5, we have 2 < M < 3. The
continuity of g also implies there exists an a € (M, 3) such that g3(z) = 1. Since
g(z) > z on (M,3), ¢°(z) > z for z € (M, 3) sufficiently close to M. Putting
this together implies there exists z € (M, 3) such that g®(z) = z. Since z cannot
be a fixed point and 3 is a prime number, z must be a periodic point of period
3. Similarly, there must exist some y € (M, 3) such that g®(y) = M, thus yis a
homoclinic point. The existence of a divergent trajectory follows as in Theorem

4.4. ad

If we can compactify the map g, then we would obtain chaos by Theorem 4.1.
The function f chosen seems to be the extension which permits the “simplest”
analysis. The fact that this function admits a negative Schwarzian derivative
on R* greatly helps our understanding of the dynamics; it seems unlikely that

a general extension will have this property.
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