Unbounded Orbits and Binary Digits

Marc Chamberland

Department of Mathematics and Computer Science
Grinnell College
Grinnell, TA, 50112
E-mail: chamberl@math.grin.edu
and

Mario Martelli

Department of Mathematics

Claremont McKenna College
Claremont, CA 91711

E-mail: mmartelli@mckenna.edu

AMS subject classification : 37E05, 37E10

Keywords. Dense orbit, topological conjugacy, binary expansion, expanding

map, circle map.

On August 6, 2000 at UCLA, Ron Graham gave a joint address for the
American Mathematical Society and the Mathematical Association of America
entitled “Mathematics in the 215t Century: Problems and Prospects.” His talk
included the following open problem:

Consider the sequence {z,}5, generated by

Question: Is the sequence {z,} unbounded?



Graham offered some modest numerical evidence that the sequence is un-
bounded, but stated that a proof seems elusive. This note will show more
precisely why this is such a hard question.

A natural approach is to consider the structure of the periodic orbits of
f(z) = = — 1/z. Since this map is clearly expanding, no periodic orbit is
locally attracting. The following result also excludes rational orbits from being

eventually periodic.

Theorem 1.1 If x ¢ {—1,0,1} is a rational number, then the orbit of x is

neither eventually periodic nor iterates to 0.

Proof: The map f is a 2:1 function. Note that
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If a,b € Z and (a,b) = 1, then ((a — b)(a + b),ab) = 1. Expressing all rational
numbers in lowest form, this implies that if a rational number r has a rational
predecessor, the denominator of the predecessor must be no greater than the
denominator of r, with equality only if r is an integer or if r = 1/m for some

integer m. However, if r € Z, then
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r — f.

The right-hand expression is rational only if » = 0, but

+1+
0 41 g ELEVE
2
If » = 1/m for some integer m, then
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The right-hand expression is never rational. In conclusion, since the predeces-
sor path of every rational number is eventually an irrational number, the set
of rational numbers is forward invariant, and {—1,0,1} are the only rationals

iterating in finitely many steps to infinity, we have the desired result. O



It should be noted that this proof may be used to settle Problem B4 on the
recently held 62"¢ William Lowell Putnam Mathematical Competition, Decem-
ber 2001. Specifically, if S denotes the set of rationals different from -1,0 or 1,
then
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The map f is part of a more general family of functions, namely

ful@) =a (:17— %) .

The structure of f;,, makes this function more accessible to study.

Theorem 1.2 The map f, /2 is topologically conjugate to the map 2z mod 1 on
the interval [0,1).

Proof: Introducing the conjugating function h(z) = cot(nz), we find that f
is conjugate to g, where g is defined by

g9(z) = h7'ofoh(z)
= %cot_l(cot(Zmz))

= 2z mod 1.
O

The dynamics of the map 2z mod 1 are well-understood; it is equivalent
to considering the shift map on the binary form of a number. The standard
treatment of symbol sequences shows that the set of periodic orbits is dense
and there exist dense orbits, thus our original map f,/, shares such dynamical
properties. The same results could be seen by showing that the Julia set of
z + % (2 —1/z) is the real-axis and using properties of Julia sets of rational
functions; see [1] or [3]. This highlights the sensitivity of the map f and the fact
that determining the dynamics of a particular orbit can be much more difficult

than finding generic results.



If we modified our original problem to consider iterating f; /o instead of fi
and used the same initial condition z¢ = 2, the conjugacy implies the orbit
is dense on the real axis if and only if the binary expansion of (cot™!2)/x
contains substrings with every possible combination of zeros and ones. One may
hope that if this number was “sufficiently” irrational, such would be the case.
Unfortunately, a number may be transcendental but not satisfy this condition.

The simplest example is the Thue-Morse constant, defined by

where the parity P(n) is the number (mod 2) of ones in the binary expansion
of n. It is known that P is transcendental yet there are never three consecutive
zeros or three consecutive ones; see [4].

Theorem 1.2 may be generalized to f, for all a > 0.

Theorem 1.3 The map f, is topologically conjugate to the map 2z mod 1 on
the interval [0,1) for each a > 0.

To prove this result, we need an important theorem concerning expanding
circle maps. A C! map f: S' — S! is ezpanding if there exist constants C' > 0
and A > 1 such that

|Df"(z)| > CA"

for all n € Z* and all z € S'. An expanding map is a covering map of degree
d, that is, it is a surjective local homeomorphism such that the pre-image of
each point consists of exactly d points. The following important result is due to

Michael Shub (see [5], [2, p.89]).

Theorem 1.4 Let f : S' — S' be an expanding map of degree d. If g : S* —
St is a covering map of degree d, then there exists a (not necessarily strictly)

monotone and surjective map h: S* — S* such that hog= foh.



In other words, an expanding map of degree d is conjugate to the map =z —
dz mod 1 on [0,1). Now the proof of Theorem 1.3:
Proof: Using the conjugacy h(x) = cot(x), we define

go(x) = hilofaoh(w)

= cot™'(2acot(2x)).
The functions g, are covering maps of degree 2 for all a > 0. Calculating

ga(z) = la
. sin?(2z) + 4a2 cos?(2z)’

one may easily show that ¢/ (z) > 1 for all z € [0,7) if a > 1/4, therefore by
Theorem 1.4, these functions are conjugate to 2z mod 1 on the interval [0,1).

For a € (0,1/4], we consider D(g,(g,(x))). Using

sin(ga (z)) = 1 cos(ga (z)) = 2a cot(2x)
g V1 +4a? cot?(2z) g "~ V/1+4a%cot?(2z)

we find that

B a(1 + 4a® cot?(22))?
~ 4a? cot?(2z) + a2(4a? cot? (2z) — 1)2°
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Letting y = cos(2x) implies

D(ga(94(2))) = 90(90(2))g, ()
4a%(1 — y? + 4a’y?)
4a2y2(1 _ yZ) + a2(4a2y2 _ ]_ + y2)2 °

We wish to show that this expression is greater than 1 for all y € [—1,1]. This is
accomplished by showing that the denominator is smaller than the numerator,

since
4a’y*(1 —y?) + a®(4a®y® — 1+ y*)* — 4a*(1 — y* + 4ay?)
= y*(a®(1 +4a®)? — 4a®) + y*(4a® — 2a*(4a® + 1) — 4a*(4a® — 1)) — 3a®

= [y*(16a* + 8a® — 3) + y*(—24a” — 2) — 3].



This expression is negative for all y € [-1,1] and a € (0,1/4]. For each such a
there exists some A > 1 such that D(gq(94(z))) > A > 1 for all = € [0, 7). Since

gh(z) > Ao > 0, we have for every positive integer k
D (o) 2 (V) D (0) 2 00 (VA)

This implies

D (gg’”) >C (\/X)k . C =min{1,/V})

therefore g, is expanding. By Theorem 1.4, g, is conjugate to 2z mod 1 on the

interval [0, 1). O

In summary, solving the original problem presented by Graham involves two
serious obstacles. First, though we know that f; is conjugate to 2z mod 1
on the interval [0,1), finding the conjugating map seems very difficult, if not
impossible. Second, even if one can determine this conjugating function, one
must still determine the limiting dynamics on the transformed initial condition.
This involves understanding the distribution of the binary digits of a given
number, another formidable task. It is known, however, that the set of initial
points z € [0, 1) whose orbit under 2z mod 1 is dense has measure 1, so Theorem

1.3 implies probabilistically that the orbit is dense on the real line.
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